Slotted Optical Switch

OPB806

τ_{T} Electronics

Features:

- Non-contact switching
- Base or side mounting
- $0.125^{\prime \prime}(3.175 \mathrm{~mm})$ slot width

Description:

The OPB806 slotted optical switch consists of an infrared emitting diode (LED) and a NPN silicon phototransistor, mounted on opposite sides of a $0.125^{\prime \prime}(3.175 \mathrm{~mm})$ wide slot.

The OPB806 has two sets of mounting tabs allowing Base or Side mounting of the device. The LED and phototransistor leads project from each side of the housing on 0.050 " (1.27 mm) centers.

Phototransistor switching takes place whenever an opaque object passes through the slot.

Applications:

- Non-contact interruptive object sensing

RoHS

- Assembly line automation
- Machine automation
- Equipment security
- Machine safety

Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	Aperture	Lead Length
OPB806	935 nm	Transistor	$0.125^{\prime \prime} / 0.375^{\prime \prime}$	None	$0.500{ }^{\prime \prime}$

Pin \#	Description
1	Anode
2	Cathode
3	Collector
4	Emitter

Electrical Specifications

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left[1 / 16\right.$ inch $(1.6 \mathrm{~mm})$ from the case for 5 sec . with soldering iron ${ }^{(1)}$	$260^{\circ} \mathrm{C}$

Input Diode

Continuous Forward Current	50 mA
Peak Forward Current (1 μ s pulse width, 300 pps$)$	3 A
Reverse Voltage	2 V
Power Dissipation ${ }^{(2)}$	100 mW

Output Phototransistor

Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5 V
Power Dissipation ${ }^{(2)}$	100 mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode (See OP165 for additional information)

V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}$

Output Phototransistor (See OP505 for additional information)

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	30	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	5	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\text {CEO }}$	Collector-Emitter Dark Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{E}_{\mathrm{E}}=0$

Combined

$\mathrm{V}_{\mathrm{CE}(\text { SAT })}$	Collector-Emitter Saturation Voltage	-	-	0.5	V	$\mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	On-State Collector Current	0.4	-	-	mA	$\mathrm{V}_{\mathrm{CE}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

Notes:

(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$..
(3) Methanol or isopropanol are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
(4) All parameters were tested using pulse technique.

Slotted Optical Switch

OPB806

T Electronics

Slotted Optical Switch

T Electronics

Output Current vs Forward Current vs Temperature

